
AFRL-IF-RS-TR-2001-207
Final Technical Report
October 2001

MARKET-BASED ADAPTIVE ARCHITECTURES
FOR INFORMATION SURVIVABILITY

University of Michigan

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F159

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20020117 020

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasablc to the National Technical
Information Service (NTIS). At NT1S it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-207 has been reviewed and is approved for publication.

APPROVED:
KEVIN A.KWIAT
Project Engineer

FOR THE DIRECTOR:
WARREN H. DEBANY, JR.
Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

MARKET-BASED ADAPTIVE ARCHITECTURES
FOR INFORMATION SURVIVABILITY

Michael P. Wellman
Sugih Jamin

Jeffrey K. Mackie-Mason

Contractor: University of Michigan
Contract Number: F30602-97-1-0228
Effective Date of Contract: 13 May 1997
Contract Expiration Date: 31 December 2000
Program Code Number: F159
Short Title of Work: Market-Based Adaptive Architectures

for Information Survivability
Period of Work Covered: May 97 - Dec 00

Principal Investigator: Michael P. Wellman
Phone: (734)764-6894

AFRL Project Engineer: Kevin A. Kwiat
Phone: (315)330-1692

Distribution Authorized to U.S. Government Agencies and their
Contractors; Specific Authority; Jan 97. Other requests for this
document shall be referred to AFRL/IFGA, Rome, NY.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Kevin A. Kwiat, AFRL/IFGA, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

P.b„c reports burdan for this coliection of informafion is estimated ,o average 1 hou, per re= «^^^«^SSSSrÄ aÄ t^
gathering and maintaining the data needed, and comp.ot.ng and «iviewmg.(he co ec on of intarnat ""s bf ™ c°™^ °tc for ln^rrnation Operations and Reports, 1215 Jefferson

S°;r^h°:.s^ ^uc"on p,oiect io704-°188'- washi"aiu"'DC 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

October 2001

3. REPORT TYPE AND DATES COVERED

FINAL (MAY 97 - DEC 00)

4. TITLE AND SUBTITLE
MARKET-BASED ADAPTIVE ARCHITECTURES FOR INFORMATION

SURVIV ABILITY

6. AUTHOR(S)
Michael P. Wellman, SugihJamin, and Jeffrey K. Mackie-Mason

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Michigan
Artificial Intelligence Laboratory
1101 Peal Avenue
Ann Arbor, MI 48109-2110

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington, VA 22203-1714 Rome, NY 13441-4505

5. FUNDING NUMBERS

C - F3060-97-1-0228
PE - 6230IE
PR - F159
TA - 40
WU - 03

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-207

11. SUPPLEMENTARY NOTES
Defense Advanced Research Projects Agency Program Manager: Robert M. Laddaga, ITO, (03) 696-7459
Air Force Research Laboratory Project Engineer: Kevin A. Kwiat, IFGA, (315) 330-16922

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) .
Market-based techniques represent a general approach to resource allocation in decentralized environments. In dynamic
situations the ability to find effective allocations of resources without central information and control is a crucial element oi
adaptivity This report covers market models developed for a variety of resource allocation problems. An overview ot
results demonstrates the range of applicability of these models, and their role in achieving survivable responses to resource

shocks in distributed systems.

14. SUBJECT TERMS
Market-Based Resource Allocation, Adaptive Behavior, Survivability

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

36
16. PRICE CODE

20. LIMITATION OF ABSTRAU I

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed bv ANSI Sid. 239.18
Designed using Perform Pro. WHS/DIOR. Ocl 94

Table of Contents

TECHNICAL ACCOMPLISHMENTS 1

Market-Based Resource Allocation 1

The MARX Project 3

Problems Studied A 4
Methods

Information System Applications
Wide-Area Storage Allocation (Web Caching) *

Packet Scheduling
Scheduling Disciplines
Dropping Policies
Interactions of Scheduling and Dropping Policies ^

Experiments

9
Dynamic Allocation Scenarios "

Discrete Shocks in Task Dependency Networks JO
Shocks in a Continuous Network Allocation Problem 13

Computational Market Testbed 15

1 7 Discussion: Evaluating Adaptive Behavior A/

18 References

PERSONNEL SUPPORTED 22

PUBLICATIONS AND PRESENTATIONS 23

List of Figures

FIGURE 1: MARX PROJECT RESEARCH TOPICS 3
FIGURE 2: IN THIS TRIAL, WEIGHTED LFU (WLFU) PROVIDED HIGHER VALUE THAN

UNWEIGHTED FREQUENCY- OR RECENCY-BASED POLICIES (ULFU AND PLRU) 7
FIGURE 3: A TASK DEPENDENCY NETWORK, NO RESOURCE CONTENTION 10
FIGURE 4: A SECOND TASK OBJECTIVE INTRODUCES RESOURCE CONTENTION 11
FIGURE 5: A COMPUTATIONAL MARKET REPRESENTING THE TASK DEPENDENCY

NETWORK H

FIGURE 6: ALLOCATION AND PRICES ON INTRODUCTION OF COMMANDER 2'S TASK 12
FIGURE 7: RESPONSE TO SHOCK WITH CONSTANT BIT RATE TRANSMISSIONS 14
FIGURE 8: SHOCK RESPONSE WITH PARETO-DISTRIBUTED BACKGROUND TRAFFIC 14
FIGURE 9: AUCTIONBOT ARCHITECTURE AND DATA FLOW DIAGRAM 15
FIGURE 10: FLEXIBLE MULTI-LEVEL DATA STRUCTURES FOR BIDS AND ORDER BOOKS.. 16

Technical Accomplishments

Market-based techniques represent a general approach to resource allocation in
decentralized environments. In dynamic situations, the ability to find effective
allocations of resources without central information and control is a crucial
element of adaptivity. The Michigan Adaptive Resource eXchange (MARX)
Project has developed market models for a variety of resource allocation
problems-both canonical and application-specific. An overview of results from
these efforts demonstrates the range of applicability of these methods, and their
role in achieving survivable responses to resource shocks in distributed systems.

Market-Based Resource Allocation

A premise of inherent survivability is that a system can be made robust to
partially successful attack through general architectural features. One way to
achieve inherent survivability is through adaptivity. flexible response to
unanticipated changes in environment. The key to successful adaptive behavior
is flexibility—-the ability to adapt to a range of adverse events without having to
anticipate the particular responses in advance.

One important way to promote adaptivity is through dynamic resource allocation.
Typically, the "unanticipated changes" that the system must respond to come in
the form of lost or degraded resources, or new tasks that require resources. The
response therefore takes the form of a new allocation of (remaining) resources
to new and existing tasks. A flexible response through dynamic allocation is m
principle possible in any context where resources may be redirected to multiple
functions. That is, a resource originally intended for one use can be applied to
another more critical use when the situation calls for it.

The problem then reduces to how to effectively perform dynamic resource
allocation. For inherent survivability, the question is how to build this capability
into the fundamental architecture of infrastructure for large-scale information
systems.

For the past few years, the MARX Project (Michigan Adaptive Resource eXchange,
http://ai.eecs.umich.edu/MARX) has investigated a market-based approach:
organize the system in terms of a computational market, where the entities {agents)
controlling and capable of employing resources exchange them through a market
price system. Building a computational market requires commerce infrastructure:
basic services implementing negotiation, exchange (including payment in
standard currencies), and other core functions of an operational economy.

There are many technical arguments—both computational and economic—in
favor of adopting a market-based approach to dynamic resource allocation
(Wellman and Wurman 1998a). We briefly mention a few of the more salient
ones.

• Decentralization. Large-scale information systems typically involve multiple,
geographically and administratively distributed participants. No central

source has the information or authority to make global decisions about how
resources should be deployed. Markets are naturally decentralized according
to agents representing distinct interests and capabilities.

• Distributed decision and communication. Even when decisions could in principle
be centralized, such an approach is often infeasible due to tractability,
modularity, fault tolerance, or (most importantly in this context) vulnerability
concerns. Markets are distributed in two fundamental ways. First, agents
make local decisions based on their private information and objectives.
Second, individual resources can be allocated according to separate
mechanisms (i.e., each resource has its own price), with interdependencies
among them accounted for by the agent's negotiation strategies.

• Value-based allocation. Markets inherently account for the relative values and
costs of resources and activities when determining allocations. This is in
contrast to fixed priority schemes, common in most non-market systems.
Agents indicate local values and costs in their negotiations, which are
subsequently reflected in prices. Under certain conditions, markets are
known to produce efficient (optimal) allocations despite the diversity of
interests and locality of decision making.

• Embedding in economy. Information systems are not isolated, and indeed the
activities mediated through the system ultimately connect to the real world.
Thus, it is necessary (and desirable) to consider allocating resources not only
within the system, but between entities in the system in the outside world. All
real-world entities with significant use or production of resources are already
equipped with a "market interface", that is, they naturally deal in economic
terms, simply because markets are a "world standard".

This last reason suggests that market-based architectures are not only
appropriate, but also in a sense inevitable. What may not be inevitable is an
explicit fundamental connection between the external market economy and
system infrastructure. We argue that such a seamless integration is in fact
desirable, as imposing an additional, incompatible resource allocation mechanism
for distinguished "system" resources introduces an arbitrary and artificial
boundary. Indeed, the value of system resources ultimately lies in how they
promote goals (or what their alternative uses are) outside the system, and so
connecting them explicitly seems more likely to lead to proper valuations.

Finally, the rapid development of infrastructure supporting all phases of
electronic commerce will naturally serve as building blocks for development of
market-based architectures for information systems. Thus, the market-based
approach represents the ultimate "COTS" (commercial off-the-shelf) solution,
both in terms of middleware services supporting market functions, and in terms
of modules developed by commercial entities for market-based interaction
within and outside the system boundaries.

The MARX Project

As indicated in the hierarchy of topics displayed in Figure 1, research in MARX
has been divided into work on particular dynamic resource allocation problems,
and development of generic infrastructure for deploying computational markets.
Problems we have modeled in turn fall into two types: allocation of
computational resources within information systems, and canonical allocation
problems defined by problem structure rather than application. In order to
assess the performance of pragmatic allocation mechanisms for these problems
we have had to pursue methods for the assessment of pragmatic mechanisms,
since the traditional theoretical analyses are limited to mechanisms that may
provably not exist for our problems.

MARX

Resource Allocation Problems Computational Market Infrastructure

Info System Applications

Canonical Allocation Problems

Web Caching Packet Scheduling

Scheduling Supply Chains Single Good

Figure 1: MARX project research topics.

Problems Studied

Only by examining specific information-system applications can we compare
results from the computational market with alternative approaches, and only by
generalizing to domain-independent problem classes can we establish that our
methodology will cover a broad range of survivability contexts.

Under information system applications, we have chosen two important and very
well-studied problems—web caching and packet scheduling. These two examples
stand for large classes of important problems. The first is an important instance
of distributed data storage; the second an instance of data transport. As described
below, these problems admit multiple market-based approaches, which in some
instances can be related to well-known non-market allocation schemes. This
facilitates evaluation of allocation quality as well as adaptivity properties.

Our canonical allocation problems are designed to represent important patterns
of resource allocation that occur across a multitude of application contexts. The
simplest are the "single good" problems, which concern the negotiation of
transfers of a single resource type. The simple structure of these problems makes

them amenable to in-depth analysis, including a near exhaustive consideration of
negotiation mechanisms and strategies. Understanding the single-good problem
(which is also very well characterized in the economic literature) is a prerequisite
to informed design of computational markets for more complex problems
involving multiple resource types.

Problems involving complex interrelated activities invariably involve multiple
resource types. Although these resources can be allocated through multiple
single-resource mechanisms, the interdependencies among the resources
significantly complicate the problem of effective resource allocation. In our
MARX research, we have been exploring two particularly common and
challenging source of interdependencies. First, in scheduling problems, resources
have temporal dependencies, meaning that the value of a resource for a
particular use depends fundamentally on when it is employed (e.g., whether it
enables the user to meet a deadline). We have some particular protocols for
market based scheduling. The techniques work well for some problem classes,
but others can be fundamentally difficult to decentralize (Walsh et al. 1998;
Wellman et al. to appear). Second, in supply chain problems (Walsh and Wellman
1999b), dependencies are prerequisite relationships between elements in the
chain. We have captured an interesting class of supply chain problems in our task
dependency network model described below. In addition, we have considered
combinations of scheduling and supply chain problems, involving both sorts of
dependencies. We believe that these two patterns represent the important
dependencies arising in a large class of allocation problems underlying large-
scale systems. These resource allocation problems serve as the source of dynamic
allocation scenarios that can demonstrate inherent survivability through market-
based adaptivity. Specific applications represent potential domains for the
demonstrations, whereas the canonical problems dictate our approach to
mapping our techniques to new domains. The computational infrastructure for
market-based allocation we have developed in the MARX project provides a
vehicle for deploying these demonstrations.

Methods

In our research we are developing methods for pragmatic mechanism design. A
mechanism is a set of rules that specifies allocations as a function of messages
from the agents who hold private information (an auction is a classic example).
There is an extensive theoretical literature on the design of resource allocation
mechanisms (Campbell 1987; Mas-Colell, Whinston, and Green 1995). The
standard approach is to seek a mechanism that always yields an allocation that is
maximally efficient subject to plausibility constraints on agent behavior. A typical
set of constraints is that agents are rational in the sense of playing Bayesian-Nash
strategies; their messages are consistent with self-interest (and thus may not be
truthful revelations of their private information); and they (including the
mediator or auctioneer) will not participate unless they expect to be no worse off
as a consequence of participating. Unfortunately in the negotiation problems on
which we focus, well-known results establish that no mechanism (market or
otherwise) exists that satisfies this set of seemingly reasonable constraints while
always guaranteeing efficient allocations (Gibbard 1973; Myerson and

Satterthwaite 1983). Obviously, for the reasons above and others, market-based
mechanisms are still of considerable real world importance. We thus have been
developing methods to design and assess feasible mechanisms that cannot satisfy
the full set of standard desiderata.

One of our methods is conventional theoretical performance analysis, but subject
to the feasibility constraint: we relax one of the assumptions on plausible behavior
enough to avoid the impossibility results cited above. For example, in our study
of market mechanisms for scheduling problems, we have sharp results on
performance when agents are restricted to natural but not fully rational bidding
strategies (Wellman et al. to appear). Another method is to simulate allocation
outcomes under reasonable assumptions on agent behavior. We have used this
method to assess allocation efficiency (Anderson, Birgean, and MacKie-Mason
1999; Wurman 1999)(Kelly et al. 1999a, 1999b; Callaway or other packet
scheduling work). We have used both of these methods to assess the
performance of a non-price economic allocation mechanism (the Generalized
Vickrey Auction (MacKie-Mason and Varian 1994)). For example, in our
application of the GVA to scheduling (Wellman et al. to appear), we relax the
requirement that the auctioneer balance its budget. In a single-good context
(Anderson, Birgean, and MacKie-Mason 1999), we give up some efficiency in
order to balance the budget through participation and transaction fees.

Information System Applications

Our argument that dynamic resource allocation via computational markets
yields inherent survivability hinges on the premise that most important
applications can be cast in this framework. We have significant experience in
mapping a wide range of problems to the market framework, including those
described here and others (Wellman 1996). Most practical resource allocation
problems fall in one of the four categories formed by crossing discrete or
continuous quantity scales with discrete or continuous time scales. Therefore,
many interesting problems fit models we have already designed and tested. In
this section we describe two particular applications, to resource allocation
problems arising in networked information systems.

Wide-Area Storage Allocation (Web Caching)

The problem of Web caching is that of selectively allocating storage on a wide-
area network in such a way as to maximize value to system users. Shared Web
caches provide different benefits for different classes of users: latency reduction
for clients, congestion reduction for all network users, and load reduction for
servers. Disk space in shared Web caches is a strategically-placed scarce resource
that may be diverted to serve some users at the expense of others, and therefore
these caches are ideal loci for differential quality-of-service (QoS) mechanisms.
We have explored two kinds of mechanisms that bias the allocation of cache
space toward system users (servers and clients) who value caching most. One
approach is to generalize conventional cache replacement policies such as the
"least frequently used" (LFU) algorithm. Another is to design explicit market
allocation mechanisms in which agents bid for disk space in shared caches. We

have pursued both of these methodologies and have evaluated several designs
in comparison with conventional cache management algorithms (Williams et al.
1996).

It is sometimes possible to establish tight bounds on the performance of cache
replacement policies independent of workload (client document request
patterns) (Irani 1997; Sleator and Tarjan 1985). This approach, however, yields
performance guarantees far weaker and more pessimistic than the observed
performance of most reasonable removal policies under real workloads. In order
to evaluate the relative performance of practical caching schemes we must
therefore employ trace-driven simulation, in which a cache simulator processes
workloads logged at actual caches. The National Laboratory for Applied
Network Research (NLANR) currently operates ten large Web caches
nationwide, each of which serves many corporate- and campus-sized client
networks. We obtained client request data collected at six of these caches over a
four-week period and wrote a general-purpose cache simulator to support trace-
driven experiments. A distinguishing feature of our evaluation methodology is
that our main performance metric is value delivered to system users rather than
standard metrics such as byte hit rate (fraction of requested data served from
cache rather than servers). By diverting disk space to serve the needs of those
who most value caching (variable QoS), we aim to increase the aggregate value
of the cache (utility maximization), as compared with value-insensitive
replacement policies.

In the LFU replacement policy, unpopular data are flushed from the cache in
favor of heavily requested data. Formally, if n„ is the number of requests for
URL u and size„ is its size, an LFU cache stores URLs with the highest observed
values of nu. Let sizeuVH be the benefit that the server associated with u receives
when requests for u are served from cache rather than by the server. Our
weighted LFU cache replacement policy stores URLs with the highest value of
n„V„, because these are precisely the items that generate the most aggregate
utility per unit cache size. The potential value generated by URL u per unit size is
given by

Sr,,,„,sfs/or„ (size„Vu I size,) = nuV„.

Weighted LFU is interesting because it corresponds exactly to the policy resulting
from a market-based mechanism: it is natural to interpret sizeHV„ as a server's
payment to a profit-maximizing cache each time the cache serves u. Experiments
have shown that this simple generalization of LFU delivers substantially higher
aggregate value to servers than ordinary LFU for some distributions of V„. For
example, Figure 2 presents simulation results for a two-week interval of NLANR
data for a large cache site (Kelly et al. 1999). As the graph shows, weighted LFU
outperforms LFU or LRU (the least-recently-used replacement policy) for any
given cache size. Weighted LFU performs even better when augmented with a
tunable aging mechanism that prevents the cache from becoming cluttered with
formerly-popular documents that are no longer requested (Kelly, Jamin, and
MacKie-Mason 1999). Extensive experiments have shown that weighted LFU
with aging usually delivers more aggregate value to servers than "best-of-

breed" algorithms from the Web caching literature, e.g., "Greedy-Dual Size"
(Cao and Irani 1997).

UC site 8/15-8/28

16 64
cache size (MB)

1024

Figure 2: In this trial, weighted LFU (wLFU) provided higher value than
unweighted frequency- or recency-based policies (uLFU and pLRU).

Whereas weighted LFU successfully exploits server valuation information to
deliver high value to system users, it is not likely to obtain this private
information: servers would generally find it advantageous to report false Vu

values. An incentive-compatible allocation mechanism has the property that
truthful revelation of valuation information is a dominant strategy for
participating agents. In our implementation, weighted LFU is not incentive
compatible. By contrast, a periodic auction market in which servers and clients
directly bid for cache disk space can be incentive compatible, given the right
choice of auction. We have investigated a scenario in which servers with simple
and reasonable bidding strategies contend for disk space via periodic incentive-
compatible auctions. We characterize some conditions under which this
particular system can obtain higher overall value than even weighted LFU with
aging (Chan et al. 1999).

Packet Scheduling

The fundamental feature of a market-based packet scheduling system is that it
provides differential QoS to packets based on willingness to pay, as expressed in
bids. We achieve this through a bid-sensitive queuing system, consisting of two
parts: the scheduling discipline which determines the next packet to be served, and
a dropping policy which determines the packet to drop when the queue is full.

Scheduling Disciplines

We study two scheduling disciplines that can provide market-based QoS: Lottery
Scheduling (Waldspurger and Weihl 1994) and Deterministic (Static Priority)
Scheduling. For comparison purposes, we also include traditional FIFO (first-in-
first-out) scheduling in our study.

Lottery Scheduling is a probabilistic method, originally proposed for CPU
scheduling. The next packet to be served is chosen by holding a lottery, with the
probability of an individual packet being served being proportional to its bid
value:

Pr(packet k is served) = Bk / X,ß;,

where B, is the bid value of packet i and;' ranges over the packets in queue.

With lottery scheduling, packets with higher bids have a greater chance of being
served next. Therefore, during times of congestion higher bid packets should
typically experience lower queuing delay than packets with lower bids.
However, since low bid packets nevertheless will have a chance of being served,
they will not be starved. Even if high bid packets keep arriving, low bid packets
will still receive a share of the bandwidth proportional to their bid value.

One side effect of Lottery Scheduling is that packets in a flow have a higher
probability of arriving out of order at the receiver. When a flow has more than
one packet in a router's queue, each packet has equal probability of being
forwarded next (assuming the flow has not changed the bid value carried by its
packets).

Deterministic Scheduling always forwards the packet with the highest bid. If the
queue contains multiple packets with the same highest bid value, they are served
in FIFO order. As long as a flow does not change its bid value, Deterministic
Scheduling will not reorder queued packets belonging to a flow.1 The
disadvantage of Deterministic Scheduling is the possibility of starvation; if higher
bid packets keep arriving, lower bid packets will never be served.

Dropping Policies

We consider three dropping policies: Lottery Drop, Deterministic Drop, and the
standard Drop Tail policies.

The mechanism behind Lottery Drop is analogous to that of Lottery Scheduling.
When a new packet arrives at a full queue it is placed in the queue and a lottery is
held to determine which packet to drop. For Lottery Drop the probability of an
individual packet being dropped is proportional to the inverse of its bid value.

Pr(packet kis dropped) = (1/B,) / 1,(1/6,).

Hence higher bid packets are less likely to be dropped than lower bid packets.

Deterministic Drop selects the lowest bid packet in the queue to drop. If there is
more than one packet with the same lowest bid, the latest to arrive is dropped.

1 However, packets can still arrive out of order at the receiver due to network topological or routing
changes.

Interactions of Scheduling and Dropping Policies

As stated above, a queuing mechanism is defined by its scheduling discipline and
dropping policy. When combined into a single queuing mechanism, the
scheduling discipline and dropping policy are no longer independent. For
example, focusing on the time spent by a single packet in the queue, the number
of packets served prior to this packet influences the chances of this packet being
dropped. Likewise, the number of other packets dropped influences the amount
of time the packet must wait before it sees service. Hence, it is important to
compare complete queuing mechanisms rather than just the forwarding or
dropping policies. The following are the combinations of scheduling disciplines
and dropping policies we have studied:

1. FIFO scheduling with Drop Tail (FSDT). This is the traditional router queuing
mechanism.

2. Lottery Scheduling with Drop Tail (LSDT). Lottery Scheduling provides lower
latencies for higher bid packets. Drop Tail guarantees that once a packet
enters the queue it will eventually be served.

3. Lottery Scheduling with Lottery Drop (LSLD). This combination tends to
favor higher bid packets in both forwarding and dropping. A packet that has
entered the queue is not guaranteed to be forwarded.

4. FIFO Scheduling with Lottery Drop (FSLD). This combination favors higher
bid packets only when there is enough congestion to cause the queue to
overflow.

5. Deterministic Scheduling with Deterministic Drop (DSDD). This combination
always forwards the highest bid packet and drops the lowest bid packet.

Experiments

We have investigated the relative ability of the various queuing mechanisms to
differentiate QoS using an experimental testbed implemented in the FreeBSD 3.2
operating system kernel. Results on constant flow priorities (to be reported
elsewhere) confirm the value-sensitivity of lottery-based schemes compared to
FIFO and drop tail, and their flexibility relative to deterministic schemes. Initial
results on adaptive behavior with dynamic flow priorities are reported below.

Dynamic Allocation Scenarios

We consider two kinds of dynamic allocation scenarios to demonstrate the
inherent survivability of market-based architectures. In both, a "normally
operating" system is subjected to a resource shock—a sudden variation in
resource availability or need—and must dynamically reallocate to address the
qualitative change in environment. In the first, which we call a discrete scenario,
the system has achieved a steady-state allocation before the shock event, which
may consist of a lost asset, loss of a key participant, or insertion of a new high
priority task. In the second, continuous scenario category, the system never

reaches a steady state, as some amount of continual variation of resources and
tasks is always present. The resource shock in this case is a qualitative jump in
the degree of this variation.

Dynamic properties necessary for survivability can be exhibited in the context of
both kinds of scenarios. We have developed in-depth models of instances of both
discrete and continuous allocation models. In this section we describe abstract
versions of discrete and continuous resource-shock scenarios, in turn.

Discrete Shocks in Task Dependency Networks

In complex activities, achievement of an overall objective may require
accomplishment of various tasks, which themselves may require subtasks, and
so on. A plan will therefore specify an entire network of task accomplishment,
with each path in the network representing a supply chain, that is, a sequence of
relationships where one task is provided as input to the next in the chain, until
the final objective is achieved.

For example, consider a hypersimplified military scenario, where a commander
wishes to execute an air attack. Air attacks require a bomber squad and a fighter
squad, and these in turn require airfields.2 Given a specification of the available
resources and task-achievement options, we can formulate a task dependency
network (Walsh and Wellman 1998) describing the possible configurations. A
solution to the planning problem is a subnetwork specifying the assignment of
tasks and subtasks so that the end objective is satisfied. When there is no
resource contention, as in the network shown in Figure 3, deriving an allocation
supporting the air attack is simple.

Commander 1
Air Attack

Bomber Squad 2

Airfield 2b
Fighter Squad 2

Figure 3: A task dependency network, no resource contention.

2 Squads and airfields might be viewed as resources rather than tasks, unless we interpret the squad, for
example, as just a shorthand for the mission the squad performs. Which view is more natural is situation-
dependent, and so we use the terms task and resource interchangeably in this discussion.

10

If a new task arrives, however, as represented by "Commander 2" in Figure 4,
its resource requirement may conflict with the previous allocation. In the
example, the ground attack cannot be accomplished, because there are not
enough airfields to support the units required for both attacks.

Airfield 2b

Bomber Squad 2

Commander 1
Air Attack

Commander 2
Ground Attack

Fighter Squad 2

Figure 4: A second task objective introduces resource contention.

If the new task is higher priority than the old, then we would like the system to
adapt by dynamically reallocating the airfields to squads participating in the new
activity. A market-based system can perform this reallocation as follows. The
diagram of Figure 5 depicts a computational market in tasks and resources, with
agents rendered as rectangles and exchangeable goods as circles. The shaded
elements represent the steady-state solution to the initial situation, without
resource contention (prices not shown).

Bomber squad 1

Airfield 1a

Airfield 1b
3 y \ \
)f \ Paratroopers 1 '

Bomber squad 2'

Y
, A/ \\

Commander 1

■*E=l

\\
Cj \< Ground Attack >o

Figure 5: A computational market representing the task dependency network.

To represent the resource shock, we introduce a new agent, Commander 2, who
places a significantly higher value on its mission than did the first commander.
The market, starting from the previous allocation and prices, adjusts prices until
no agents change their bids. In the new steady-state solution, the higher priority
task is achieved, and the lower priority task is unaffordable. (If both were

11

possible, then both could be supported by the market.) The extended network,
with task valuations and final prices, is shown in Figure 6.

Bomber squad 1

Airfield 1a

Air Attack

"O
$10

Commander 1

$10

Commander 2

Ground Attack »U M :tacK j»

$22 $30

Figure 6: Allocation and prices on introduction of Commander 2's task.

We have developed a formal characterization of these task dependency
networks, and a precise market protocol—distributed and
asynchronous—specifying the allocation mechanisms and agent bidding
strategies (Walsh and Wellman 1998). We have found that a broad class of
networks reliably converge to a solution as long as the value of the end task
sufficiently exceeds its ultimate cost (Walsh and Wellman 1999a). This implies that
the protocol successfully adapts to discrete resource shocks of the sort described
above, if the new task has sufficiently higher value than the others in the
network. Similarly, the protocol can also handle necessary reallocations in case of
loss of resources, loss of agents, or exogenous increases in cost of resources, so
long as some tasks have sufficiently high value relative to the costs of surviving
resources.

In the present discussion, we assumed that we could continue the market at the
previous prices in response to a shock. While this is a realistic assumption if the
shock occurs during negotiation, agents may not wish to continue as such if the
exchange contracts have been finalized. We consider it an interesting avenue for
future work to analyze protocols for agents to reallocate tasks for which they
have acquired rights.

The task dependency network model is quite general, covering a broad range of
planning and scheduling problems involving limited resources. Formally, the
problem is NP-hard, which means that any propositional satisfiability (SAT)
problem can be encoded in a task dependency network. As a result, the market
protocol implements a decentralized procedure for a broad range of
combinatorial optimization problems.3

3 We are not claiming that the particular decentralization arising from the SAT reduction is a natural one or
useful per se. However, it is perhaps surprising that such problems can be solved reliably without
systematic or explicitly stochastic search.

12

Shocks in a Continuous Network Allocation Problem

Unlike the episodic task allocation considered above, in continuous dynamic
scenarios, the commodities themselves are typically controllable at fine grain. In
addition, the allocation is continuously updated over time as computational and
communicational activities originate and terminate on the system. Resource
shocks take the form of sudden changes in the profile of resources available or
activities demanded.4

In preliminary studies of the packet scheduling problem, we have verified some
expected qualitative behaviors of adaptation to continuous resource shocks.
Upon shocks (such as a sudden increase in priorities for a fraction of service
requests), a system under the control of lottery scheduling rapidly transitions to
an appropriate revised profile of service levels. The speed and sharpness of the
transition depends significantly on the volume and nature of the fraction of
traffic that is unchanged by the shock.

For example, Figure 6 shows the response of network traffic to two shocks,
measured in terms of the percentage of sent packets received (i.e. not dropped
due to buffer overflow). We initially experiment with 40 connections all
submitting the same bid value with each packet to be delivered. Around 100
seconds into the experiment, half of the connections increase their priority (and
hence bid values) five-fold. As the graph shows, when network switches
implement the lottery drop (LD) policy, connections that increase their bid values
immediately see improvements on the percentage of packets received at the
destinations. This comes at the cost of worse service experienced by lower
bidding connections. At around 200 seconds into the experiment, half of the
connections that earlier raised their bid value double them again. These
connections again immediately see improvements in service over those that do
not raise their bids. Finally, at around 300 seconds into the experiment, the
highest bidding connections lower their bids back down by half. This results in
half of the connections again receiving the same service that is better than the
service seen by the other half that never raised its bid value. Figure 7 also shows
that if in addition to lottery drop network switches also implement lottery-
scheduling (LS), as opposed to first-in-first-out scheduling (FS), packets with
higher bids see additional preferential treatment.

4 In general the quantity and time scales need not match: there are common problems involving
continuously varying quantities allocated at discrete intervals; likewise there are interesting problems in the
allocation of discrete goods continuously over time (e.g., airport landing slots, (Rassenti, Smith, and
Bulfin 1982)).

13

-a
>
O
CD

cc

O
CO a.

0.9

0.8 -

0.7

0.6

0.5

0.4

0.3

0.2

FSLD
LSLD

%*■*■**

fc-^.,..»-*-*-.*-*.,

100000 200000 300000 40000C
Time (ms)

Figure 7: Response to shock with constant bit rate transmissions.

All the connections in the experiment described above transmitted at constant bit
rate. Researchers in network traffic characterization have observed long-range
dependency in aggregate network traffic (Leland et al. 1994). To study the
effectiveness of our market-based packet scheduling mechanism on long-range
dependent traffic, we conduct a similar experiment on sources generating on-off
traffic with Pareto distributed on and off times. Aggregate traffic from such
sources has been shown to exhibit long-range dependency (Willinger 1995).
Figure 8 shows that in the face of long-range dependent traffic, while higher
bidders continue to receive preferential treatment under lottery drop, and an
exaggerated preferential treatment under lottery scheduling, lower bidders do
not suffer as much as in the previous case. The high variance of long-range
dependent traffic allows lower bidding traffic to continue to be served at
network switches, albeit with a longer delay. Hence, when network traffic is
very bursty, lower bidding traffic experiences longer queuing delay but not
higher loss rate.

0.95

0.9 -

FSLD
LSLD

100000 200000 300000 40000C
Time (ms)

Figure 8: Shock response with Pareto-distributed background traffic.

14

Computational Market Testbed

Our computational market infrastructure is based on the Michigan Internet
AuctionBot,5 a configurable auction server that supports a wide range of
negotiation mechanisms. The AuctionBot has a web interface for human traders,
as well as an API for software agents. In addition, we have built extended
modules ("agentware") to facilitate development of software traders, and tools
for specification of entire market configurations. Thus, the AuctionBot serves as a
general tool for rapid construction of market-based demos.

Bid or
withdraw
event

Scheduler

All events

New data
or update Select and

update data

Clear, quote,
or expire
event

Auctioneer
Kernel

Figure 9: AuctionBot architecture and data flow diagram.

The basic organization and operation of the AuctionBot is depicted in Figure 9.
Human or software agents create auctions or submit bids via web or
programming interfaces (O'Malley and Kelly 1998). A scheduler maintains a
queue of pending events—processing bids, clearing auctions, or releasing
information. An event is activated when it rises to the top of the queue (i.e., all
necessarily prior events have been initiated) and its earliest activation time (if
any) is past. The schedule passes activated events to the respective auctioneer
kernels, which ensure that the events are executed in a manner respecting
temporal consistency (Wellman and Wurman 1998b). A relational database
maintains persistent data about bids, agents, and auction specifications,
providing availability of relevant negotiation information to agents even when
auction processes are inactive or excessively busy.

The AuctionBot is designed to cover a large class of conceivable auction
mechanisms, as defined by our systematic parametrization of the design space
(Wurman, Wellman, and Walsh to appear). This configurability is implemented
by a flexible multi-level scheme supporting multiple representations for bids and
order books (sets of bids), and multiple clearing algorithms implementing
allocation rules. As depicted in Figure 10, some characteristics of bid and order-
book representations are generic to all auctions, some depend on the form of

http://auction.eecs.umich.edu/

15

bids allowed, and yet others are optimized for particular clearing algorithms. For
example, the "4-heap" data structure supports a broad class of allocation
mechanisms for discrete goods (Wurman, Walsh, and Wellman 1998), but can be
overridden in a modular manner to support alternative or new mechanisms.

bid table (hashed)
"" " " " "" '"Expiration" "Auctioneerbase class

Queue
jser ID ptr

\ Kl%
* Cärigüäge Level Class

^
/

BidData

PQ Notification ?^X^
(Doubly Cr

Internal
Representation

Linked o
List) I

u
Aigornnm tevei uiass

4-heap algorithm

SP Notification 9/
(Doubly if
Linked A

List) J

vy vy

. _... .. ^ J

Figure 10: Flexible multi-level data structures for bids and order books.

Current work is developing AuctionBot functionality further, in particular
(1) augmenting the range of negotiation mechanisms, (2) improving tools for
specification of scenarios, (3) and extending the API and agentware, especially to
facilitate participation by third-party agent developers.6

Other technical enhancements to the market protocols underway are designed to
improve their acceptability in real distributed computation environments. These
include

1. Protocol layers addressing security and privacy requirements (Harkavy,
Tygar, and Kikuchi 1998; Kelly 1998; Naor, Pinkas, and Sumner 1999).

2. A protocol layer for distributed detection of quiescence in the negotiation
process (e.g., when a steady state is reached after a shock). Our approach
(Wellman and Walsh 1999) is based on an extension of the Dijkstra-Scholten
algorithm for detecting termination in a diffusing computation (Dijkstra and
Schölten 1980; Lynch 1996).

6 The AuctionBot has been operational and available over the Internet since 1997, and versions of our
agentware are already available.

16

Discussion: Evaluating Adaptive Behavior

To make statements about inherent survivability based on our work, we require
evaluation criteria for the adaptivity properties of our demonstrated
architecture.7

Adaptation is required only in the event of unanticipated change, so we define
adaptation scenarios in terms of the cause and nature of changes. Adverse
changes in fundamental operating conditions ("failures") may be caused by
intentional attacks as well as accidental causes (e.g., hardware or software bugs).
Other changes in the environment may not be considered failures, but may
nevertheless entail significant adaptation due to new directives, loss of resources,
additional resources introduced, or other revisions in capabilities. For our
purposes the cause of the resource shock is typically not relevant, as the
allocation problem is the same regardless of whether the change in resource
environment is due to an intentional attack or accidental event.8

The second question is how to evaluate an adaptation episode. The standard of
performance is with respect to the behaviors possible given the resource shock; it
is not useful to compare performance to what could have been achieved in the
absence of a shock. We presume that the system is comprised of multiple
participants (i.e., we have a distributed or multiagent system), each with its own
objectives or preferences over possible outcomes. These outcomes in general
characterizes complete temporal courses of activity, not just instantaneous states.
The overall welfare of a system is some function of the outcomes of all of the
respective participants, accumulated over time. For example, one simple welfare
function would be a time-discounted sum of utility functions representing the
respective preferences of all of the participants.

For example, consider the response of the task network protocol to discrete
shocks, as discussed above. We have been able to establish that under certain
conditions, the protocol responds successfully to adverse shocks, such as the loss
of a basic resource or of some production capability, or increase in cost or
degradation of same. "Successfully" here means that if a good enough solution
exists in the degraded state, then the protocol will find it when resumed from a
previous steady state.

This characterization of adaptivity is quite helpful, but it does not provide a
quantitative measure of the quality of solutions reached. We have begun to
evaluate the quality of solutions found for the baseline market-based task
network protocol (without shocks), by measuring the total surplus achieved by

7 Some of this discussion is based on the report of the "Measuring Adaptivity" working group at the
DARPA/ITO Workshop on Adaptive Architectures for Information Survivability, May 1998. Group
members were V. Lesser, F. Webber, M. Wellman, D. Wells, and Y. Yemini. Views expressed here, of
course, are our sole responsibility.
8 However, the cause is highly relevant to anticipation and prevention of future resource shocks. We view
this as outside the scope of what market-based architectures provide. Prediction and prevention techniques
(e.g., intrusion detection) are thus complementary rather than competitive methods.

17

all agents in the system (Walsh and Wellman 1999a). The surplus for a given
agent is the difference between the value of what it obtains, and what it pays. In
a series of randomly generated task allocation networks, we found that solutions
achieved about 83% of the optimal surplus on average. Most of the efficiency loss
was due to agents that purchased one or more inputs without selling their
outputs. By extending these protocols to permit decommitment (Sandholm and
Lesser 1996) in such cases, we can recover much of the inefficiency, and achieve
97% of total surplus on average (Walsh and Wellman 1999a).

These results are merely suggestive, as exact values will depend on the method
for generating problem instances, among other factors. Moreover, for
evaluating adaptivity we must examine specific shock scenarios. In this case, we
would expect the system to achieve comparable fractions of available surplus for
the case of shocks attributed to lost resources, rising resource costs, or the
introduction of higher valued tasks. Whether the protocol would prove to be as
effective at adapting to the availability of new resources or production
capabilities is an open question.

In related work, we have emphasized the importance of evaluating the time path
of performance, and comparing different solutions based on their time-
discounted sum of agent utilities over time (Brooks et al. 1999). For example, one
solution might be guaranteed to yield the highest value once the adjustment to
the new situation is complete, whereas another has a lower ultimate value, but
rises towards its steady-state value much more quickly. Enough advantage over
the earlier periods following the shock may outweigh, after discounting,
permanent long run gains from the former approach.

Finally, in evaluating adaptivity we must consider some overarching criteria that
go beyond quality of allocations achieved. These include online costs, such as
overhead of the adaptive infrastructure, as well as offline costs, such as the effort
in building the infrastructure, creating interfaces for system components, and
modeling domains so they can effectively exploit the adaptive features of the
system.

References

Anderson, Axel, Ionel Birgean, and Jeffrey K. MacKie-Mason. 1999. Bilateral
negotiation with fees. In IBM/IAC Workshop on Internet-Based Negotiation
Technology, Yorktown Heights, NY.

Brooks, Christopher H., Scott Fay, Rajarshi Das, Jeffrey K. MacKie-Mason,
Jeffrey O. Kephart, and Edmund Durfee. 1999. Automated Stategy Seaches in an
Electronic Goods Market: Learning and Complex Price Schedules. In ACM
Conference on Electronic Commerce, Denver.

Campbell, Donald E. 1987. Resource Allocation Mechanisms: Cambridge University
Press.

Cao, Pei, and Sandy Irani. 1997. Cost-aware WWW proxy caching algorithms. In
USENIX Symposium on Internet Technologies and Systems.

18

Chan, Yee Man, Jonathan Womer, Jeffrey K. MacKie-Mason, and Sugih Jamin.
1999. One size doesn't fit all: Improving network QoS through preference-
driven Web caching. In Second Berlin Internet Economics Workshop.

Dijkstra, Edsger W., and C. S. Schölten. 1980. Termination detection for diffusing
computations. Information Processing Letters 11:1-4.

Gibbard, Allan. 1973. Manipulation of voting schemes: A general result.
Econometrica 41:587-601.

Harkavy, Michael, J. D. Tygar, and Hiroaki Kikuchi. 1998. Electronic auctions
with private bids. In Third USENIX Workshop on Electronic Commerce, Boston.

Irani, Sandy. 1997. Page replacement with multi-size pages and applications to
Web caching. In Twenty-Ninth ACM Symposium on the Theory of Computing, El
Paso, TX.

Kelly, Terence P. 1998. Secure anonymous auctions without trusted parties:
University of Michigan.

Kelly, Terence P., Yee-Man Chan, Sugih Jamin, and Jeffrey K. MacKie-Mason.
1999. Biased replacement policies for web caches: Differential quality-of-service
and aggregate user value. In Fourth International Web Caching Workshop.

Kelly, Terence P., Sugih Jamin, and Jeffrey K. MacKie-Mason. 1999. Variable QoS
from Shared Web Caches: User-Centered Design and Value-Sensitive
Replacement.

Leland, W. E., M. S. Taqqu, W. Willinger, and D. V. Wilson. 1994. On the Self-
Similar Nature of Ethernet Traffic (Extended Version). IEEE Transactions on
Networking 2:1-15.

Lynch, Nancy A. 1996. Distributed Algorithms: Morgan Kaufmann.

MacKie-Mason, Jeffrey K., and Hal R. Varian. 1994. Generalized Vickrey
Auctions: University of Michigan.

Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green. 1995.
Microeconomic Theory: Oxford University Press.

Myerson, Roger B., and Mark A. Satterthwaite. 1983. Efficient mechanisms for
bilateral trading. Journal of Economic Theory 29:265-281.

Naor, Moni, Benny Pinkas, and Reuben Sumner. 1999. Privacy Preserving
Auctions and Mechanism Design. In ACM Conference on Electronic Commerce,
Denver.

O'Malley, Kevin, and Terence Kelly. 1998. An API for Internet auctions. Dr.
Dobb's Journal (September):70-74.

19

Rassenti, S.}., V. L. Smith, and R. L. Bulfin. 1982. A combinatorial auction
mechanism for airport time slot allocation. Bell journal of Economics 13:402-417.

Sandholm, Tuomas Wv and Victor R. Lesser. 1996. Advantages of a leveled
commitment contracting protocol. In Thirteenth National Conference on Artificial
Intelligence, Portland, OR.

Sleator, Daniel, and Robert Tarjan. 1985. Amortized efficiency of list update and
paging rules. Communications of the ACM 28:202-208.

Waldspurger, Carl A., and William E. Weihl. 1994. Lottery scheduling: Flexible
proportional-share resource management. In Proceedings of the First Symposium
on Operating System Design and Implementation (OSD1).

Walsh, William E., and Michael P. Wellman. 1998. A market protocol for
distributed task allocation. In Third International Conference on Multiagent Systems,
July, Paris.

Walsh, William E., and Michael P. Wellman. 1999a. Efficiency and equilibrium in
task allocation economies with hierarchical dependencies. In Sixteenth
International Joint Conference on Artificial Intelligence, Stockholm.

Walsh, William E., and Michael P. Wellman. 1999b. Modeling supply chain
formation in multiagent systems. In IJCAI-99 Workshop on Agent-Mediated
Electronic Commerce, Stockholm.

Walsh, William E., Michael P. Wellman, Peter R. Wurman, and Jeffrey K. MacKie-
Mason. 1998. Some economics of market-based distributed scheduling. In
Eighteenth International Conference on Distributed Computing Systems, May,
Amsterdam.

Wellman, Michael P. 1996. Market-oriented programming: Some early lessons. In
Market-Based Control: A Paradigm for Distributed Resource Allocation, edited by S.
Clearwater: World Scientific.

Wellman, Michael P., and William E. Walsh. 1999. Distributed quiescence
detection in multiagent negotiation. In AAAI-99 Workshop on Negotiation, Orlando,
FL.

Wellman, Michael P., William E. Walsh, Peter R. Wurman, and Jeffrey K. MacKie-
Mason. to appear. Auction protocols for decentralized scheduling. Games and
Economic Behavior 35:271-303.

Wellman, Michael P., and Peter R. Wurman. 1998a. Market-aware agents for a
multiagent world. Robotics and Autonomous Systems 24:115-125.

Wellman, Michael P., and Peter R. Wurman. 1998b. Real time issues for Internet
auctions. In IEEE Workshop on Dependable and Real-Time E-Commerce Systems, June,
Denver, CO.

20

Williams, Stephen, Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, and
Edward A. Fox. 1996. Removal policies for World-Wide Web documents. In ACM
SIGCOMM.

Willinger, W. and Taqqu, M.S. and Sherman, R. and Wilson, D.V. 1995. Self-
similarity through high-variability: Statistical analysis of Ethernet LAN traffic at
the source level. In ACM SIGCOMM.

Wurman, Peter R. 1999. Market Structure and Multidimensional Auction Design
for Computational Economies. PhD, Computer Science and Engineering,
University of Michigan.

Wurman, Peter R., William E. Walsh, and Michael P. Wellman. 1998. Flexible
double auctions for electronic commerce: Theory and implementation. Decision
Support Systems 24:17-27.

Wurman, Peter R., Michael P. Wellman, and William E. Walsh, to appear. A
parametrization of the auction design space. Games and Economic Behavior
35:304-338.

21

Personnel Supported

Faculty (co-PIs):

• Sugih Jamin, Dept of Electrical Engineering and Computer Science
• Jeffrey K. MacKie-Mason, Dept of Economics and School of Information
• Michael P. Wellman, Dept of Electrical Engineering and Computer Science

Graduate students:

• Axel Anderson (Economics)
• Jonathan Arnold (Computer Science and Engineering)
• Roshan Bangera (Computer Science and Engineering)
• Ionel Birgean (Economics)
• Paul Callaway (Computer Science and Engineering)
• Joseph Eggleston (Computer Science and Engineering)
• Terence Kelly (Computer Science and Engineering)
• Rajeev Oza (Computer Science and Engineering)
• Jonathan Womer (School of Information)
• Peter Wurman (Computer Science and Engineering)

Undergraduate students:

• Yee-Man Chan
• Vidya Jeyachandrabose
• Matthew Shultz

Research programmer:

• Kevin O'Malley

22

Publications and Presentations

See attached. This information is also posted at:

http://ai.eecs.umich.edu/MARX/publications.html
http://ai.eecs.umich.edu/MAKK/presentations.html

23

MISSION
OF

AFRL/INFORMA TION DIRECTORA TE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

